B.A/B.Sc $5^{\text {th }}$ Semester (Honours) Examination, 2021 (CBCS)
 Subject: Mathematics
 Course: BMH5DSE11
 (Linear Programming)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:

$$
6 \times 5=30
$$

(a) Solve the following linear programming problem :

Maximize $Z=2 x_{1}-3 x_{2}$
subject to the constraints

$$
\begin{gathered}
-x_{1}+x_{2} \geq-2 \\
5 x_{1}+4 x_{2} \leq 46 \\
7 x_{1}+2 x_{2} \geq 32 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

(b) A Company produces two types of sauces: A and B. These sauces are both made by blending two ingredients X and Y . A certain level of flexibility is permitted in the formulae of these products. Indeed the restrictions are that i) B must contain not more than 75 percent of X and ii) A must contain not less than 25 percent of X and not less than 50 percent of Y. Upto 400 kg of X and 300 kg of Y could be purchased. The company can sell as much as these sauces as it produces at a price Rs. 18 for A and Rs 17 for B per kg . X and Y cost Rs. 1.60 and Rs. 2.05 per kg respectively. Formulate a linear programming problem to maximize its profit.
(c) (i) Define convex set with an example.
(ii) Prove that the set of all feasible solutions of $A x=b, x \geq 0$ is a closed convex set.
(d) Use the Dual Simplex method to solve the problem given below:

$$
\begin{aligned}
& \text { Minimize } Z=x_{1}+2 x_{2} \\
& \text { Subject to } \\
& 2 x_{1}+x_{2} \geq 4 \\
& x_{1}+7 x_{2} \geq 7 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(e) Prove that a necessary and sufficient condition for the existence of feasible solution of a transportation problem is $\sum a_{i}=\sum b_{j},(i=1,2, \ldots, m ; j=1,2, \ldots, n)$.
(f) Find the optimal solution of the following Transportation Problem :

	D_{1}	D_{2}	D_{3}	D_{4}	a_{i}
O_{1}	23	27	16	18	30
O_{2}	12	17	20	51	40
O_{3}	22	28	12	32	53
$\mathrm{~b}_{\mathrm{j}}$	22	35	25	41	123

(g) Solve the following Travelling Salesman problem :

To

From

	A	B	C	D	E
A	∞	6	12	6	4
B	6	∞	10	5	4
C	8	7	∞	11	3
D	5	4	11	∞	5
E	5	2	7	8	∞

(h) Using dominance property reduce the following payoff matrix to 2×2 matrix and hence solve the problem :

Player B

Player A

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{1}$	3	2	4	0
$\mathrm{~A}_{2}$	3	4	2	4
$\mathrm{~A}_{3}$	4	2	4	0
$\mathrm{~A}_{4}$	0	4	0	8

2. Answer any three questions:

$$
10 \times 3=30
$$

(a) (i) Prove that every extreme point of the convex set of all feasible solutions of the system $A x=b, x \geq 0$ corresponds to a basic feasible solution.
(ii) Find all the basic feasible solutions of the following system of equations

$$
\begin{gathered}
2 x_{1}+6 x_{2}+2 x_{3}+x_{4}=3 \\
6 x_{1}+4 x_{2}+4 x_{3}+6 x_{4}=2 \\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{gathered}
$$

(b) (i) Solve the following LPP by Big-M method :

$$
\begin{array}{r}
\text { Maximize } Z=6 x_{1}+4 x_{2} \\
\text { subject to } 2 x_{1}+3 x_{2} \leq 30 \\
3 x_{1}+2 x_{2} \leq 24 \\
x_{1}+x_{2} \geq 3 \\
x_{1}, x_{2} \geq 0
\end{array}
$$

(ii) Solve the following LPP by two phase method :

$$
\begin{aligned}
& \text { Maximize } \mathrm{Z}=5 x_{1}+3 x_{2} \\
& \text { subject to } \quad \begin{array}{l}
2 x_{1}+x_{2} \leq 1 \\
3 x_{1}+4 x_{2} \geq 12 \\
\\
\\
x_{1}, x_{2} \geq 0
\end{array}
\end{aligned}
$$

(c) (i) If the i-th variable in the primal problem is unrestricted in sign then show that the i-th constraint of the corresponding dual problem is an equation.
(ii) Using duality, solve the following problem:

$$
\begin{array}{r}
\text { Maximize } \mathrm{Z}=5 x_{1}-2 x_{2}+3 x_{3} \\
\text { subject to } \quad \begin{aligned}
2 x_{1}-2 x_{2}+x_{3} & \geq 2 \\
3 x_{1}-4 x_{2} & \leq 3 \\
x_{2}+3 x_{3} & \leq 5 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned} .
\end{array}
$$

(d) (i) Solve the following assignment problem :

	M_{1}	M_{2}	M_{3}	M_{4}
$\mathrm{~J}_{1}$				
$\mathrm{~J}_{2}$				
$\mathrm{~J}_{3}$	2 3 4 5 4 5 6 7 $\mathrm{~J}_{4}$ 7 8 9 3 5 8 4			

(ii) Show that a subset X of column vectors of coefficient matrix of a transportation problem is linearly dependent if their corresponding cells in the transportation tableau contains a loop.
(e) (i) By the graphical method solve the game whose payoff matrix is given by:

Player B

(ii) Solve the following game:

Player B
$\begin{array}{llll}\mathrm{B}_{1} & \mathrm{~B}_{2} & \mathrm{~B}_{3} & \mathrm{~B}_{4}\end{array}$

Player A

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{1}$	4 2 3 2 $\mathrm{~A}_{2}$ $\mathrm{~A}_{3}$ -2 4 6 4 2 1 3 5 l			

B.A/B.Sc $5^{\text {th }}$ Semester (Honours) Examination, 2021 (CBCS)
 Subject: Mathematics
 Course: BMH5DSE12

(Number Theory)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:

$$
6 \times 5=30
$$

(a) Solve the congruence $x^{2} \equiv 91\left(\bmod 3^{3}\right)$.
(b) Define Legendre Symbol. Prove that $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$ where p is an odd prime a, b are any integers coprime to p.
(c) Prove that $\varphi(n)=\frac{n}{2}$ if and only if $n=2^{k}$ for some integer $k \geq 1$, where φ is the Euler's phi function.
(d) Find all primitive roots modulo 11.
(e) \quad Show that, if $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)=\operatorname{gcd}\left(\operatorname{ord}_{n}^{a}, \operatorname{ord}_{n}^{b}\right)=1$ then $\operatorname{ord}_{n}^{a b}=\operatorname{ord}_{n}^{a} . \operatorname{ord}_{n}^{b}$.
(f) Prove that, if a is prime to b then $a^{2}+b^{2}$ is prime to $a^{2} b^{2}$.
(g) Find the values of the Legendre Symbols: $\left(\frac{180}{59}\right),\left(\frac{1236}{4567}\right)$.
(h) Find the general solution in integer of the equation $12 x+7 y=8$.
2. Answer any three questions:

$$
10 \times 3=30
$$

(a) (i) Prove that there are infinitely many primes of the form $4 k+1, k$ being an integer.
(ii) Prove that $12 \mid x y z$ for any primitive Pythagorean triple x, y, z.
(b) (i) If p is prime, prove that $\sqrt{ } p$ is not a rational number.
(ii) Prove that the total number of positive divisors of a positive integer n is odd if and only if n is a perfect square.
(c) (i) Show that Goldbach conjecture (G) implies that every even integer >5 is sum of three primes.
(ii) Find a four digit numbers which satisfy the following properties: (i) perfect square (ii) first two digits are equal (iii) last two digits are equal.
(d) (i) Find the least positive integer which leaves remainder 2, 3 and 4 when divided by 3,5 and 11 respectively.
(ii) Prove that the functions τ and σ are both multiplicative.
(e) (i) Prove that there are no primitive roots belonging to 2^{n} for all $n \geq 3$.
(ii) Find the remainder when $1^{3}+2^{3}+\cdots+99^{3}$ is divided by 3 .

B.A/B.Sc 5 ${ }^{\text {th }}$ Semester (Honours) Examination, 2021 (CBCS)
 Subject: Mathematics
 Course: BMH5DSE13
 (Point Set Topology)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:
 $$
6 \times 5=30
$$

(a) Prove that a function $f:(X, \tau) \rightarrow\left(Y, \tau^{\prime}\right)$ is continuous if and only if $\overline{f^{-1}(B)} \subset f^{-1}(\bar{B})$ for every $B \subset Y ;(X, \tau)$ and $\left(Y, \tau^{\prime}\right)$ being any two topological spaces.
(b) Prove that the union of a family of connected sets, no two of which are separated is a connected set.
(c) Define a locally connected space. Give an example of a connected space which is not locally connected.
(d) Prove that the image of a locally connected space under a mapping which is both open and continuous is locally connected. Is the continuous image of a locally connected space is locally connected? Support your answer.
(e) Prove that every complete metric space is of second category.
(f) Prove that a compact subset in a metric space is closed and bounded. Is the converse true? Support your answer.
(g) If u is an infinite cardinal number, prove that $u u=u$.
(h) If u, v and w are cardinal numbers, prove that $u^{v} u^{w}=u^{v+w}$.
2. Answer any three questions:
(a) (i) If u, v, w are cardinal numbers and $u \leq v$, prove that $u w \leq \nu w$.
(ii) For any cardinal number u, prove that $u<2^{u}$.
(iii) Prove that $2^{a}=c$, where $a=\operatorname{card} \mathbb{N}$ and $c=\operatorname{card} \mathbb{R}$.
(b) (i) Define an ordinal number. If α, β, γ are order types with $\alpha<\beta$ and $\beta<\gamma$, prove that $\alpha<\gamma$.
(ii) For any two ordinal numbers α and β, prove that exactly one of the following holds: $\alpha<\beta, \alpha=\beta, \beta<\alpha$.
(c) (i) Define a Kuratowski closure operator and explain the topology derived from it.
(ii) Let A be a subset of a topological space (X, τ) and $x_{0} \in X$. Let $\left\{x_{n}\right\}$ be a
sequence in A such that $\left\{x_{n}\right\}$ converges to x_{0}. Prove that $x_{0} \in \bar{A}$. Is the converse true? Justify your answer.
(d) (i) Prove that an infinite space with cofinite topology is compact.
(ii) Prove that a closed subspace of a locally compact space is locally compact.
(iii) Give an example with justification to show that the continuous image of a locally compact space need not be locally compact.
(e) (i) Define path-connectedness. Prove that a path-connected space is connected. Is the $[1+3+3]$ converse true? Justify your answer.
(ii) Prove that a real valued continuous function defined on a compact space is bounded and attains its least and greatest values.

