B.A/B.Sc 5th Semester (Honours) Examination, 2021 (CBCS) Subject: Mathematics Course: BMH5DSE11 (Linear Programming)

Time: 3 Hours

Full Marks: 60

 $6 \times 5 = 30$

[5]

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1. Answer any six questions:

(a) Solve the following linear programming problem : Maximize $Z = 2x_1 - 3x_2$ subject to the constraints $-x_1 + x_2 > -2$

$$\begin{aligned}
-x_1 + x_2 &\ge -2 \\
5x_1 + 4x_2 &\le 46 \\
7x_1 + 2x_2 &\ge 32 \\
x_1, x_2 &\ge 0.
\end{aligned}$$

- (b) A Company produces two types of sauces: A and B. These sauces are both made by [5] blending two ingredients X and Y. A certain level of flexibility is permitted in the formulae of these products. Indeed the restrictions are that i) B must contain not more than 75 percent of X and ii) A must contain not less than 25 percent of X and not less than 50 percent of Y. Upto 400 kg of X and 300 kg of Y could be purchased. The company can sell as much as these sauces as it produces at a price Rs. 18 for A and Rs 17 for B per kg. X and Y cost Rs.1.60 and Rs.2.05 per kg respectively. Formulate a linear programming problem to maximize its profit.
- (c) (i) Define convex set with an example. [2] Prove that the set of all feasible solutions of Ax = b, $x \ge 0$ is a closed convex set. [3] (ii) (d) Use the Dual Simplex method to solve the problem given below: [5] Minimize $Z = x_1 + 2x_2$ $2x_1 + x_2 \ge 4$ Subject to $x_1 + 7 x_2 \ge 7$ $x_1, x_2 \ge 0.$ (e) Prove that a necessary and sufficient condition for the existence of feasible solution of a [5] transportation problem is $\sum a_i = \sum b_i$, (i = 1, 2, ..., m; j = 1, 2, ..., n).

(f)

Find the optimal solution of the following Transportation Problem :

	D_1	D_2	D_3	D_4	a_{i}
O ₁	23	27	16	18	30
O ₂	12	17	20	51	40
O ₃	22	28	12	32	53
b _j	22	35	25	41	123

(g) Solve the following Travelling Salesman problem :

[5]

[5]

	А	В	С	D	E
А	∞	6	12	6	4
В	6	∞	10	5	4
С	8	7	∞	11	3
D	5	4	11	8	5
E	5	2	7	8	∞

To

(h) Using dominance property reduce the following payoff matrix to 2×2 matrix and hence [5] solve the problem :

		B ₁	B ₂	B ₃	B_4
Dlavor A	A ₁	3	2	4	0
Player A	A ₂	3	4	2	4
	A ₃	4	2	4	0
	A ₄	0	4	0	8

2. Answer any three questions: $10 \times 3 = 30$ (a) (i) Prove that every extreme point of the convex set of all feasible solutions of the system [5] $Ax = b, x \ge 0$ corresponds to a basic feasible solution. Find all the basic feasible solutions of the following system of equations [5] (ii) $2x_1 + 6x_2 + 2x_3 + x_4 = 3$ $6x_1 + 4x_2 + 4x_3 + 6x_4 = 2$ $x_1, x_2, x_3, x_4 \ge 0.$ (b) (i) Solve the following LPP by Big-M method : [6] Maximize $Z = 6x_1 + 4x_2$ subject to $2x_1 + 3x_2 \le 30$ $3x_1 + 2x_2 \le 24$ $x_1 + x_2 \ge 3$ $x_1, x_2 \ge 0.$

Player B

(ii) Solve the following LPP by two phase method :

Maximize Z =
$$5x_1 + 3x_2$$

subject to $2x_1 + x_2 \le 1$
 $3x_1 + 4x_2 \ge 12$
 $x_1, x_2 \ge 0.$

- (c) (i) If the *i*-th variable in the primal problem is unrestricted in sign then show that the *i*-th [3] constraint of the corresponding dual problem is an equation.
 - (ii) Using duality, solve the following problem:

Maximize Z =
$$5x_1 - 2x_2 + 3x_3$$

subject to
 $2x_1 - 2x_2 + x_3 \ge 2$
 $3x_1 - 4x_2 \le 3$
 $x_2 + 3x_3 \le 5$
 $x_1, x_2, x_3 \ge 0.$

(d) (i) Solve the following assignment problem :

	M_1	M_2	M_3	M_4	
\mathbf{J}_1	2	3	4	5	
J_2	4	5	6	7	
J_3	7	8	9	8	
\mathbf{J}_4	3	5	8	4	

(ii) Show that a subset X of column vectors of coefficient matrix of a transportation problem [4] is linearly dependent if their corresponding cells in the transportation tableau contains a loop.

(e) (i) By the graphical method solve the game whose payoff matrix is given by:	
---	--

		Player B				
		\mathbf{B}_1	\mathbf{B}_2	\mathbf{B}_3	\mathbf{B}_4	
	A_1	6	5	2	3	
Player A	A_2	1	2	6	3	

(ii) Solve the following game:

Player B

Page 3 of 6

[4]

[6]

[7]

[5]

[5]

B.A/B.Sc 5th Semester (Honours) Examination, 2021 (CBCS) Subject: Mathematics Course: BMH5DSE12 (Number Theory)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1.	Answe	er any six questions: $6 \times 5 = 30$	
(a)		Solve the congruence $x^2 \equiv 91 \pmod{3^3}$.	[5]
(b)		Define Legendre Symbol. Prove that $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$ where p is an odd prime a, b are any	[5]
		integers coprime to p.	
(c)		Prove that $\varphi(n) = \frac{n}{2}$ if and only if $n = 2^k$ for some integer $k \ge 1$, where φ is the Euler's phi	[5]
		function.	
(d)		Find all primitive roots modulo 11.	[5]
(e)		Show that, if $gcd(a,n) = gcd(b,n) = gcd(ord_n^a, ord_n^b) = 1$ then $ord_n^{ab} = ord_n^a. ord_n^b$.	[5]
(f)		Prove that, if a is prime to b then $a^2 + b^2$ is prime to a^2b^2 .	[5]
(g)		Find the values of the Legendre Symbols: $\left(\frac{180}{59}\right)$, $\left(\frac{1236}{4567}\right)$.	[5]
(h)		Find the general solution in integer of the equation $12x + 7y = 8$.	[5]
2. A	nswer	any three questions: $10 \times 3 = 30$	
(a)	(i)	Prove that there are infinitely many primes of the form $4k + 1$, k being an integer.	[5]
	(ii)	Prove that $12 xyz$ for any primitive Pythagorean triple <i>x</i> , <i>y</i> , <i>z</i> .	[5]
(b)	(i)	If p is prime, prove that \sqrt{p} is not a rational number.	[5]
	(ii)	Prove that the total number of positive divisors of a positive integer n is odd if and only if n is a perfect square.	[5]
(c)	(i)	Show that Goldbach conjecture (G) implies that every even integer > 5 is sum of three primes.	[5]
	(ii)	Find a four digit numbers which satisfy the following properties: (i) perfect square (ii) first two digits are equal (iii) last two digits are equal.	[5]
(d)	(i)	Find the least positive integer which leaves remainder 2, 3 and 4 when divided by 3, 5 and 11 respectively.	[7]
	(ii)	Prove that the functions τ and σ are both multiplicative.	[3]
(e)	(i)	Prove that there are no primitive roots belonging to 2^n for all $n \ge 3$.	[5]
	(ii)	Find the remainder when $1^3 + 2^3 + \dots + 99^3$ is divided by 3.	[5]

B.A/B.Sc 5th Semester (Honours) Examination, 2021 (CBCS) Subject: Mathematics Course: BMH5DSE13 (Point Set Topology)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1.	Answe	er any six questions: $6 \times 5 = 30$	
(a)		Prove that a function $f:(X,\tau) \rightarrow (Y,\tau')$ is continuous if and only if	[5]
		$\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$ for every $B \subset Y; (X, \tau)$ and (Y, τ') being any two topological	
		spaces.	
(b)		Prove that the union of a family of connected sets, no two of which are separated is a connected set.	[5]
(c)		Define a locally connected space. Give an example of a connected space which is not locally connected.	[1+4]
(d)		Prove that the image of a locally connected space under a mapping which is both open and continuous is locally connected. Is the continuous image of a locally connected space is locally connected? Support your answer.	[3+2]
(e)		Prove that every complete metric space is of second category.	[5]
(f)		Prove that a compact subset in a metric space is closed and bounded. Is the converse true? Support your answer.	[2+2+1]
(g)		If <i>u</i> is an infinite cardinal number, prove that $uu = u$.	[5]
(h)		If u, v and w are cardinal numbers, prove that $u^{v}u^{w} = u^{v+w}$.	[5]
2. A	nswer	any three questions: $10 \times 3 = 30$)
(a)	(i)	If u, v, w are cardinal numbers and $u \le v$, prove that $uw \le vw$.	[3]
	(ii)	For any cardinal number u , prove that $u < 2^{u}$.	[4]
	(iii)	Prove that $2^a = c$, where $a = card \mathbb{N}$ and $c = card \mathbb{R}$.	[3]
(b)	(i)	Define an ordinal number. If α, β, γ are order types with $\alpha < \beta$ and $\beta < \gamma$, prove	[1+4]
		that $\alpha < \gamma$.	
	(ii)	For any two ordinal numbers α and β , prove that exactly one of the following	[5]
		holds: $\alpha < \beta, \alpha = \beta, \beta < \alpha$.	
(c)	(i)	Define a Kuratowski closure operator and explain the topology derived from it.	[1+4]
	(ii)	Let A be a subset of a topological space (X, τ) and $x_0 \in X$. Let $\{x_n\}$ be a	[2+3]

sequence in A such that $\{x_n\}$ converges to x_0 . Prove that $x_0 \in \overline{A}$. Is the converse true? Justify your answer.

- (d) (i) Prove that an infinite space with cofinite topology is compact. [3]
 - (ii) Prove that a closed subspace of a locally compact space is locally compact. [3]
 - (iii) Give an example with justification to show that the continuous image of a locally [4] compact space need not be locally compact.
- (e) (i) Define path-connectedness. Prove that a path-connected space is connected. Is the [1+3+3] converse true? Justify your answer.
 - (ii) Prove that a real valued continuous function defined on a compact space is bounded [3] and attains its least and greatest values.